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SUMMARY 
The advent of vector and massively parallel computers offers researchers the possibility of enormous gains in 
execution time for scientific and engineering programs. From the numerical point of view, such programs are 
frequently based on the inversion of sparse, diagonally banded matrices. Conventional scalar solvers often 
perform poorly on vector machines due to short effective vector lengths, and thus appropriate methods must 
be chosen for use with vector machines. In this paper a number of commonly used solvers are tested for the 
Navier-Stokes equations, in both scalar and vector form, on two vector architecture machines. A new 
method is presented which performs well in both vector and scalar form on a range of vector architectures. 
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1. INTRODUCTION 

The advent of modern high-speed vector machines, with peak performance of the order of 
gigaflops, means that many previously intractable problems in computational fluid dynamics 
may now, at least theoretically, be addressed. Unfortunately, the rate of development of vec- 
torized algorithms has not kept pace with the hardware development and the tantalizing prospect 
of gigaflop speeds still seems far away for many engineering codes, which may exploit only a few 
per cent of the peak vector performance of modern supercomputers. As a result, much effort is 
currently being expended on adapting existing scalar codes for use with supercomputer architec- 
tures' - and developing new numerical techniques suited to vector and parallel  machine^.^ 

The numerical solution of the Navier-Stokes equations (the governing equations of fluid flow 
and the basis of most fluid codes) reduces at the numerical level, once a local discretization such as 
a finite-difference or finite-element method has been applied, to the inversion of a number of 
sparse, regularly structured, diagonally banded matrices. These matrices are, at least in their 
ordering, similar to that obtained when the discretization is applied to Poisson's equation. Such 
a matrix system is shown in Section 2. Due to this similarity at the matrix level, the methods 
presented here will be described in the context of a Poisson solver, while results will also be 
presented for the methods embedded in a full Navier-Stokes solver. 

Although direct solvers are available for the matrix inversion described above, iterative 
methods are frequently used due to their relatively simple programming requirements. In this 
paper we will consider iterative methods only. One of the most popular iterative methods is the 
Alternating Direction Implicit (ADI) code in which the domain is swept repeatedly in orthogonal 
directions. Thus, in two dimensions the domain is swept first in, for instance, the x direction and 
then in the y direction in a total iteration. The AD1 algorithm is presented in detail in the next 
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section. Briefly, it consists of the Thomas tridiagonal inversion algorithm being applied success- 
ively to each of the lines in each orthogonal direction until a converged solution is attained. The 
AD1 algorithm performs well on scalar machines, converging in relatively few iterations; unfortu- 
nately, it vectorizes poorly and therefore is not well suited to vector  machine^.^ 

Classical explicit codes, such as the Jacobi method described in the next secion, vectorize very 
well but perform poorly on scalar machines due to the large number of iterations generally 
required to attain a converged solution.6 Jacobi-type codes in which a different ordering is used 
to speed the convergence are those such as the red/black (RB) code, also presented in the next 
section. Between the fully vectorized Jacobi-type codes and the fully scalar codes such as the AD1 
are a number of methods which partially vectorize, but attain convergence in fewer iterations 
than the Jacobi methods. Examples of these intermediate methods considered in the present 
paper are the line by line relaxation (LRLX) and Zebra methods, presented in the next section. 
These codes will typically have effective vector lengths of the order of the square root of the total 
number of points for two-dimensional problems which, together with the use of strided memory 
addressing, limits their performance on many of the relatively inexpensive vector machines that 
are now available. One such machine is the STAR 910 VP, a SPARC-based vector architecture 
machine for which timing results are presented in this paper. The purpose of this paper is to 
present a vectorized Poisson solver that gives a good vectorized performance on machines such as 
the STAR, while also performing well on scalar machines and vector architecture supercomputers 
such as the FUJITSU VP2200, for which timing results are also presented in this paper. 

The new method presented in this paper is a modification of the Zebra method, ensuring that 
most of the floating point operations are carried out in loops with contiguous memory addressing 
and effective vector lengths of the order of the total number of points, but with the same 
convergence characteristics as the unmodified method. It will be called the Modified Zebra (MZ). 
The modification results in the degree of vectorization approaching that of the fully explicit RB 
method, and is particularly suited to machines requiring long vectors and contiguous memory 
addressing. 

Timing results for the methods, obtained in both scalar and vector form on the STAR 910 VP 
and FUJITSU VP2200, will be presented. The present code has been optimized specifically for 
two-dimensional problems of order 100 x 100 on the STAR; however, as will be shown the 
method also performs well on the FUJITSU. 

The contents of the remainder of the paper are as follows. In Section 2 the methods 
are described in detail and in Section 3 timing results obtained using the various methods in 
both scalar and vector modes are presented. Section 4 consists of a discussion of the results and 
Section 5 contains the conclusions. 

2. METHOD 

A Poisson's equation u,,+ uyy=f, wheref is a known function of (x, y), is to be solved for u(x, y) 
in the domain 0 2  x 2 1 , 0 2 y  2 1, with suitable boundary conditions. The domain is discretized by 
the set xi, y', 1 I i l l  and 1 <jr J, with a constant spacing between points of h such that x1 =0, 

The Poisson equation is discretized, using the standard five-point centred-difference approx- 
x'= 1, y'=o, yJ= 1. 

imation, to produce the linear system 
( u i +  1.j + ui.  j +  1 -4ui.j + u i -  1, j + ui.j- 1 

i . j .  =f h2 
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This discrete formulation is rewritten in terms of one-dimensional vectors using the following 
transformation. The data points ui.j are expressed as u', where k = ( j - l ) l + i .  uk is then 
a one-dimensional vector of length K =I  x J and the above system can be written as 

( U k +  1 + u k + l -  4 U k  + u' - 1 + u' -') 
'f'. hZ 

When written in matrix form, and with the inclusion of boundary values, this system has 
a sparse banded matrix on the left-hand side, operating on the unknown vector u, of the form 
shown in Figure 1, where the non-zero diagonal bands of the matrix are labelled as a, fl, y, 6 and 
E for convenience. Typical values for the diagonals are then 

uk=l /h2 ,  
fl' = l /hz ,  
y k =  -4/h2, 
Gk=l/h2, 
E~ = l/h2, 

All the techniques described in this paper consist of repeatedly sweeping through this system, 
correcting an estimated u with each sweep, until a preset convergence criterion is attained, based 
on the residual of the discrete equation. The stored u at the final iteration is then said to be the 
solution of the algebraic system and an approximation to second degree accuracy of the solution 
of the continuous system. 

Using the notation given above, the Jacobi method with relaxation factor Relx may be written 

Figure 1 
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end 2 
DO 3 k=l, K 

u k = ( c f k -  @ v k + '  - p k  v k - 1  - ~ k  u k + I -  a k  ~ k - 1 )  fk- v k )  Relx + v k  

end 3 
Do4 k=l, K 

resid = resid + abs ( . f k  - J k  uk+ - Pk uk- ' -2 uk+' -ak uk-' - 6 u )  

end 4 
end 1, 

where f =  l/y. Typically, divisions take about three times as long to perform as multiplications, so 
whenever possible it is advisable to replace divisions with multiplications. However, a commen- 
surate change in performance will only be seen if the speed is not otherwise limited. Generally, for 
poorly vectorized codes or for scalar codes little improvement is achieved by replacing divides. As 
can be seen, the Jacobi method is very simple to code and fully explicit, with no dependencies, and 
thus the effective vector length is K .  A total iteration consists of 35 floating point operations per 
node. Such a scheme will be said to be fully vectorized and will run at a substantial percentage of 
the peak speed on a vector machine. However, the lack of dependency that allows good 
vectorization means that the coupling is poor and, as a result, the Jacobi method is inefficient in 
terms of the number of iterations required to attain a converged solution. On the STAR 910 V P  
a 50% increase in performance is obtained by explicitly caching the arrays v and u using the 
compiler directive C*$*CACHE :: u, u; timing results presented in the next section were obtained 
with these variables cached. The residual calculation loop shown above is identical for all the 
methods presented and so will not be included in the subsequent descriptions. 

An improvement in the efficiency of the basic Jacobi method may be obtained when the system 
is stepped through with a stride of 2, alternately starting on the first and second element, as 
follows: 

The outer loop of this method, associated with the calculation of the residual and the repeated 
sweeping, is identical to that of the Jacobi method and so is not included in this or any of the 
following methods. When the discretization is chosen so that I is odd, this is the redblack 
method, so named because the first of the loops effectively covers the red squares of an imaginary 
draft board, while the second covers the black. The degree of vectorization will be of the order of 
half the total vector length, K/2; however, the need to calculate a stride of 2 will reduce the 
effective vector speed on some computers. If I is even, the above scheme will no longer be 
red/black, but will be a one-directional banded algorithm, in which the first loop covers the odd 
j lines and the second covers the evenj lines. This is a limitation of this method of implementing 
a red/black algorithm, which will be discussed in Section 4. To ensure vectorization of the loops in 
the RB method it is necessary to include a compiler directive identifying these loops as having no 
vector dependencies; otherwise the compiler would assume that terms of the form u k - I  produce 
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a dependency and would not attempt vectorization. The directive used on the STAR is 
CDIR$IVDEP,  and on the FUJITSU, * V O C L  LOOP, NOV REC. The maximum speed for this 
method on the STAR was obtained by explicitly caching u. 

The line by line relaxation method consists of sweeping the domain in orthogonal directions, 
with the solution on each line being coupled to the most recently calculated solution on the 
previous line, as follows: 

Do 1 j=1, J 
Do 2 i = l ,  I 

k =(j -  1) I + i 
~ = ( ( f k - S k y k + l - ~ k U k - ~ - ~ U k + l - ~ U k - l ) y l k - U f ) R e l x + u k  

end 2 
end 1 
Do 3 i = l ,  I 

D o 4 j = l ,  J 
k = ( j -  1)1+ i 
U k  = ( ( f k  - p t 'k  i. I - p k u k - - '  -&kvk+l_CLfvk-I)ylk-vf)Relx+vk 

end 4 
end 3. 

The LRLX method has a line by line dependency and thus the effective vector length will be I for 
loop 2 and J for loop 4. Additionally, loop 4 has a stride of I, further reducing the speed of this 
method on machines such as the STAR. Compiler directives were included, identifyng the inner 
loops as having no vector dependencies, to ensure vectorization. 

For the sake of brevity, only the first of the orthogonal sweeps comprising a total iteration will 
be presented for the ADI, Zebra and MZ methods. For the AD1 method the sweep in the 
j direction is as follows: 

Do 1 j=1,  J 
Do 2 i = l ,  i 

k = ( j -  1)1+ i 
= f k -CLk u k - I  - &k U k  + I 

end 2 
Do 3 i=2,  I 

k = ( j - l ) l + i  
v = p k  j y  k -  1 

y k = y k - v p l  

r k = r k - V  I k - 1  

end 3 
DO4 i = I ,  1, - 1  

k = ( j - l ) Z + i  
uk = ( (rk - 6' u k + I ) / y k  - u k ,  Relx + uk 

end 4. 
end 1 
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The AD1 algorithm solves a tridiagonal system along each j line using the Thomas algorithm, the 
results of which are immediately coupled into the solution on the next j line, followed by an 
equivalent sweep in the orthogonal direction for the i lines, which is not shown. The use of the 
Thomas algorithm on each line means that each node is directly coupled to its neighbours on that 
line while the line by line nature of the algorithm means that the solution on any given line is 
coupled to that on the preceding line, in a single sweep. This strong coupling is the reason for the 
efficiency of the AD1 method; however, it prevents vectorization. Thus, loop 2 will have an 
effective vector length of I while the remainder of the loops will have an effective vector length 
of 1. A single iteration of the AD1 method requires 49 floating point operations per node, with 
divides counted as three operations and including the residual calculation. Replacing divides with 
multiplies resulted in no increase in performance for the AD1 method, or the Zebra method that 
follows. 

The Zebra method consists of two sweeps in each orthogonal direction. On the first sweep the 
new solution on the odd numbered lines is calculated and on the second sweep the most recently 
calculated solution on the odd numbered lines is used to update the solution on the even 
numbered lines, with a partially vectorized Thomas algorithm being used on each of the lines. The 
sweeps in the j direction are as follows: 

Do 1 n = l ,  2 
Do 2 i = 2 ,  I 
Do 3 j=n ,  J , 2  

k=( j - l ) l+ i  
y = p/p- 1 

yk = yk - v  ( j k -  1 

j-k=j-k-.k u k - 1 - 8  u k + * - y  f”-’ 

end 3 
end 2 
DO 4 i=I ,  1, -1 
Do 5 j=n ,  J ,  2 

k=(j-  I) Z+i 
uk = ( ( f k  - dk u k +  l ) / y k  - u’) Relx + u’ 

eod 5 
end 4 

end 1. 

As can be seen, the ordering of the indices for loops 3 and 5 has been interchanged when 
compared to the AD1 method, which allows a partial vectorization of the Thomas algorithm, with 
effective vector lengths of 1. The zebra banding (whereby first odd and then even lines are 
calculated, producing a line by line coupling), although of a form different from that of the AD1 
method, introduces stride and further reduces the effective vector length to 1/2. Compiler 
directives must be used to ensure that the inner loops are vectorized, while caching u and 
f provides a further -10% improvement in performance on the STAR. In a total iteration, 
including the residual calculation, the Zebra method has 49 floating point operations, of which all 
but the 11 residual operations have effective vector lengths of 1 /2  and 512 with stride. 
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The method proposed in the present paper modifies the Zebra method described above to place 

count = 0 
Do 1 while ( r e d  < cow) 

most of the floating point operations in loops with effective vector lengths of K as follows: 

count = count + 1 
DO 2 k=l,  K 

qk,$ uk- '+Ek uk+I 

rk = f k  + 4k 
end 2 
if (count = 1) then 

Do 3 i = 2 ,  I 
Do4j= l ,  J 

k =(j-l) I + i  
V k  = y k  - 1 
y k , y k - v k  p-' 

p k =  l l y k  

r k = r k -  k k - 1  v r  

end 4 
end 3 
Do5 i = I ,  1, -1 
DO 6 j =  1, J 

k =(j-1) I+ i  
p k  = 6 k  y* + I 

p = r k - p k  # + I  

end 6 
end 5 

Do 7 i=2 ,  I 
else 

DO 8 j =  1, J 
k =(j-1) Z+i 
1 3 = f - v k  I - - '  

end 8 
end 7 
Do 9 i = Z ,  1, - I  
DO 10 j =  1, J 

k = ( j - l )  I + i  
r k p - p k  r k + I  

end 10 
end 9 

endif 
Do 11 k=l,  K 

end 11 
U k = ( ( r k - q k + E k  rk+I f k + ' +  a' r k - I  Q - ' ) f k - - u k )  Relx + uk 

end 1. 

This method uses two partially vectorized sweeps to invert the tridiagonal system in the same 
manner as the Zebra, loops 7 and 9, but rather than solving for u in the second of the sweeps, the 
system is reduced to diagonal form. A final sweep of the form u = r / y  is then required to obtain the 
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new estimate for u which is accomplished in loop 11, with the l / y  replaced with 9. A line by line 
coupling is included in this loop by subtracting the direct effect of the E and a components from 
the previous iteration, which have been stored in the vector q, and then adding back their 
influence obtained from the present iteration. This is an explicit loop over the entire domain that 
will fully vectorize. 

In the first iteration of the MZ method, count = 1, the vectors v, p, 9 are used to store quantities 
that will be used unchanged on subsequent iterations. This is a particularly important part of the 
algorithm and effectively doubles the speed of the code. All but the first iteration consist of 49. 
floating point operations per node, including the residual calculation, of which 41 are contained 
in loops with effective vector lengths of K and 45 have contiguous memory addressing. The first 
iteration consists of 71 floating point operations per node. Provided the number of iterations is of 
order 10 or greater, the larger number of operations in the first iteration does not have 
a significant effect on the overall speed. Once again, compiler directives are used to ensure that the 
inner loops 4,6,8 and 10 will vectorize, while on the STAR - 50% improvement in performance 
was obtained by caching the arrays u, r, and q. 

3. RESULTS 

The STAR 910 VP is a SPARC-based vector architecture machine with a vector clock speed of 
66 MHz. It has a single multiply/add/divide pipe and in one clock can perform either a single 
vector multiply/add, or a chained vector/scalar multiply/add (x = uz, + c), where x, u and u are 
vectors and c is a scalar. Divides take three clocks to perform. A single load/store operation to 
memory can be performed in each clock, but the machine has a 1 Mbyte cache to which three 
load/store operations can be performed in each clock. The machine has a theoretical peak of 
132 mflops which can only be attained for operations involving a scalar. For vector operations of 
the type used in the methods presented in this paper, the STAR has an effective peak of 66 mflops. 
Strided operations with constant stride require an additional clock per load/store, effectively 
halving the speed. Figure 2 shows a plot of vector length against Mflops for the Jacobi method. 
The performance of the STAR asymptotes to a peak of 60 mflops at a vector length of 6000, with 
90% of the peak being attained at a vector length of 2000. In particular, it is noted that vectors of 
length 100 attain only 30% of the peak and vectors of length 50 attain only 16% of the peak. 

The FUJITSU VP2200 is a vector architecture machine with two load/store pipes, a 32 kbyte 
vector register, two multiply/add pipes and a divide pipe, with a vector clock speed of 
312 MHz. Each multiply/add pipe can produce a chained vector multiply and add each clock, 
while the divide pipe produces a divide every three clocks. The FUJITSU has a theoretical peak 
of 1.248 Gflops. However, as only two load/stores can be performed in each clock, for operations 
of the type considered here the effective peak will be between 312 and 624 mflops. For instance, 
a vector operation of the form u =ax + b will require one clock to load a and x and one clock to 
load b and store u, and will thus have a theoretical peak of 312 mflops. An operation of the type 
u = a x + b y + c  will have a theoretical peak of 416mflops and an operation of the form 
u = ax + by + cz + w will have a theoretical peak of 468 mflops. Operations of this type may be 
considered as n chained multiply/adds, with n = 1 for u = ax + b, n = 2 for u = ax + by + c, and so 
on. The number of clocks will then be n+ 1 and the number of operations will be 212; thus, the 
speed for the FUJITSU will be 312 x (2n/(n + l)), which will clearly asymptote to 624 mflops for 
large n. The FUJITSU does not require an extra clock to compute stride; however, constant stride 
will still lead to a reduction in performance if it results in memory bank conflicts with the 64-way 
interleaved memory, as well as effectively reducing the vector length as noted above. Figure 3 
shows a plot of the vector length against mflops for the Jacobi method attained with the VP2200. 
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Figure 2. Floating point speed (mflops) against vector length for the STAR 

The performance asymptotes to a peak of 406 mflops, with 90% of the peak being attained at 
I = 200. Vectors of length 100 attain 80% of peak performance, while vectors of length 50 attain 
70% of peak performance. 

Comparing the STAR to the FUJITSU, it is apparent that the FUJITSU is a lot faster, simply 
as a function of a higher clock speed and the ability to perform more operations per clock. It is 
also clear that the FUJITSU has proportionally considerably better performance for short 
vectors and strided access. These points will be considered in the next section. 

Timing results have been obtained for two problems. The first is a solution of Poisson’s 
equation with mixed Neumann and Dirichlet boundary conditions. The second is a solution of 
the Navier-Stokes equations for natural convection in a cavity with an applied horizontal 
temperature gradient. The results presented were obtained on the University of Western Austra- 
lia’s Centre for Water Research STAR 910 VP and on the Australian National University Super 
Computing Centre FUJITSU VP2200. Both these machines have vectorizing compilers which 
were used for compilation; no direct vector calls were used. Tables I and I1 present timing results 
for the Poisson’s problem on the STAR and the FUJITSU, respectively, with the convergence set 
to 1.0 x and no relaxation. It should be noted that the performance obtained included the 
residual calculation, which was always fully vectorized. This will influence the performance of the 
poorly vectorized and non-vectorized codes. 

In scalar form on the STAR the most efficient algorithm is the ADI, followed by the MZ, the 
RB and the Zebra methods. In vector form the MZ is the most efficient, with the Jacobi and RB 
also obtaining a significant vector speed-up. The Zebra and ADZ perform poorly in vector form, 
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Figure 3. Floating point speed (mflops) against vector length for the FUJITSU 

Table 1. Timing results for Poisson’s equation on STAR 

Solver Jacobi Red/black LRLX Zebra AD1 MZ 

Iterations 6715 6724 5027 2090 1668 2179 
mflops (scalar) 4.6 4.2 3.7 2.4 2 7  2 9  
mflops (vector) 60 42 28 8.6 3.3 35 

Vector/scalar 13 10 7 7  3.6 1.2 12 

Time (sec-scalar) 508 365 484 418 297 346 
Time (sec-vector) 38 36 63 115 247 29 

Table 11. Timing results for Poisson’s equation on FUJITSU 

Solver Jacobi Redblack LRLX Zebra AD1 MZ 

mflops (scalar) 28.0 27.0 16.3 19.3 13.4 22-6 
mflops (vector) 400 400 314 230 37 307 
Time (sec-scalar) 79 55 105 52 57 43 
Time (sec-vector) 5.6 3.9 5.5 4.4 20 3.3 
Vector/scalar 14 14 19 12 2-8 14 
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with the ADI, as expected, showing virtually no improvement in performance at all. These results 
were obtained on a uniform 99 x 99 mesh; changing to either a 100 x 99 or a 98 x 99 mesh, i.e. 
a mesh with an even number of points in the i direction, degrades the performance of the RB 
method by a factor of 50%, while the other five methods perform equivalently on odd and even 
meshes. 

On the VP2200 there is a considerable variation in floating point speed in scalar as well as in 
vector form, with the MZ having a significantly greater scalar floating point speed than the ADI. 
The MZ is the most efficient scalar code, followed by the Zebra, RB and then the ADI. In vector 
form all methods except the AD1 achieve significant improvements in floating point speed. The 
MZ is again the most efficient vector code; however, the Zebra achieves a good vector speed and 
performs proportionally considerably better than on the STAR, being the second most efficient 
vector code on the FUJITSU. 

Tables 111 and IV present the timing results obtained for the algorithms embedded in a full 
unsteady two-dimensional Navier-Stokes solver. Details of the solver and the problem con- 
sidered are available in Armfield’ and Patterson and Armfield* and will not be presented here. In 
the Navier-Stokes solver the methods presented in this paper are used to sequentially invert the 
matrices resulting from a finite-volume discretization of the temperature equation, the two 
momentum equations and the pressure correction equation. For the inversion of the temperature 
and momentum equations an under-relaxation factor of 0.4 is used, while for the pressure 
correction equation no relaxation is used. The Navier-Stokes solver cycles iteratively through 
these four equations at each time step until a converged solution is attained, with the process then 
repeated at the next time step. In Navier-Stokes solvers of this type it is found most efficient to 
place a limit on the number of iterations of the pressure correction equation in each cycle. Best 
results were obtained when this parameter was tuned for each of the methods considered. For the 
Jacobi, RB, LRLX, Zebra, AD1 and MZ methods, respectively the optimal pressure correction 

Table 111. Timing results for Navier-Stokes equations on STAR 

Solver Jacobi Redblack LRLX Zebra AD1 MZ 

Time (sec-scalar) 109 79 85 54 36 47 
Time (sec-vector) 13-3 11 13 16.3 28.2 5 6  
Vector/scalar 8.2 1.2 6.5 3.7 1-3 8-4 
Pressure iterations 1350 1260 810 190 160 231 
Pressure time-scalar 100 68 65 37 23 36 
Pressure time-vector 11.6 8.8 9.0 12.2 20 3.6 

Table IV. Timing results for Navier-Stokes equations on FUJITSU 

Solver Jacobi Redblack LRLX Zebra AD1 MZ 

Time (sec-scalar) 24.4 12.6 16 6.7 7.32 6-11 

Vector/scalar 14 14 18 12 3.6 13 
Pressure iterations 1350 1260 810 190 160 231 
Pressure time-scalar 16.5 11.0 13.5 5-4 5.23 4.94 
Pressure lime-vector 1.18 079 071 Q45 1.87 0 3 8  

Time (sec-vector) 1.74 0.90 0.88 0.56 2.02 047 
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iteration limits were found to be 150,80,45, 10,lO and 20. The times presented are the execution 
times for a single time step obtained when the flow was approximately half way to full 
development for a divergence residual of 1 x obtained on a non-uniform 99 x 99 mesh. 
Timings obtained at other stages during the flow development yield similar results. 

Timing results for the STAR are presented in Table 111. In Navier-Stokes solvers of this type 
the majority of the time is spent solving the pressure correction equation. For this reason, the time 
in the pressure correction equation and the total number of pressure iterations are also presented, 
as this then allows a direct comparison of the relative speeds of the six methods without having to 
consider the effect of the degree of vectorization of the remainder of the code. In scalar form, the 
ordering of the ADI, MZ, Zebra and RB is the same as for Poisson’s equation; however, it is noted 
that the variation in performance is greater, particularly between the AD1 and RB. In vector form, 
the MZ is again the most efficient method (but now by a factor of more than two from the RB, the 
next best method) when comparing the time spent in the pressure solver. It should be noted that 
the remainder of the Navier-Stokes code is written in two-dimensional array form and thus its 
degree of vectorization on the STAR is less than optimal. Rewriting the remainder of the code 
into one-dimensional form would provide a further improvement in the vectorized codes, in 
which, due to the efficiency of the Poisson solver, the overall performance is being degraded by 
the performance of the remainder of the code. 

Timing results for the Fujitsu VP2200 are shown in Table IV. The proportionally better scalar 
floating point speed of the MZ means that it is the most efficient code in both scalar and vector 
form on the VP2200. However, the better vector performance of the Zebra, as compared to that 
on the STAR, means that in both vector and scalar forms the Zebra is only a factor of 20% less 
efficient than the MZ. The LRLX, the next best method on the FUJITSU in vector form, requires 
approximately twice the execution time of the MZ. 

4. DISCUSSION 

It is clear that the relative performance of the methods is machine-dependent. On the STAR those 
methods with predominantly effective vector lengths of order K (i.e. the Jacobi, RB and MZ 
codes) obtained significantly better vector speed-ups. On the FUJITSU the codes (i.e. the LRLX 
and Zebra) of order J ( K )  and J ( K ) / 2  also obtained significant speed-ups, of approximately the 
same degree as the codes of order K. On both machines the AD1 method obtained very poor 
performance improvements under vectorization. 

In addition to the machine dependence noted above, the relative performance of the methods is 
also problem-dependent. For the Poisson’s problem the RB method performs almost as well as 
the MZ in vector form on both machines. However, for the Navier-Stokes problem the vector 
performance of the RB is a factor of two worse than the MZ. In general, it is seen that the 
non-Jacobi methods, the ADI, Zebra and MZ, all have a proportionally better performance with 
the Navier-Stokes problem than with the Poisson’s problem when compared to the Jacobi-type 
methods. This is due to the poor smoothing properties of the Jacobi methods. As is well known, 
explicit methods are very efficient at smoothing the high wave number error component but less 
efficient at smoothing the low wave number error component, which has led to the development 
of the multigrid ~ c h e m e . ~  Schemes such as the ADI, the Zebra and the MZ, because they obtain 
an exact solution via the Thomas algorithm on each of the lines, apply a much stronger 
smoothing to the low wave number component of the error. Of the. two problems considered, it is 
likely that the Navier-Stokes code, due to the repeated cycling through the momentum and 
pressure equations, has a greater input of energy into the low wave number error component, and 
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the superior low wave number smoothing of the non-Jacobi methods is the reason for their 
proportionally better performance with the Navier-Stokes code. 

It should be noted that the good performance of the RB algorithm presented here is restricted 
to grids with an odd number of points in the i direction. To implement a red/black scheme on an 
even mesh it is necessary to recalculate the stride at the end of each row or column, reducing the 
vectorization to the order of the length of each row or column and thus considerably reducing the 
vector performance. Generally, most problems may readily be defined on an odd mesh, and so 
this is not a major limitation of the present RB method. However, multigrid schemes are 
sometimes written in a manner that requires an even mesh, effectively precluding the use of the 
RB scheme as defined here. 

Despite the considerable problem and machine-dependent variation noted above, for both 
problems and both machines the MZ is the most efficient algorithm in vector form. This is most 
significant on the STAR, where the MZ obtains a more than 3 times better vector performance 
than the Zebra, while on the FUJITSU although an improvement in performance is obtained it is 
by a smaller factor. The good vector performance of the MZ on the STAR, when compared to the 
standard Zebra, may be attributed to four factors. 

(1) Shifting most floating point operations to fully explicit loops of order K. The Zebra has all 
its floating point operations, apart from the residual calculation which is the same for all 
methods, in loops of order , / (K)/2,  leading to poor performance on a machine such as the 
STAR, that requires long vectors for optimal performance. 

(2) Reducing strided memory addressing. In the MZ only four out of 49 floating point 
operations have strided addressing, whereas in the Zebra all non-residual floating point 
operations have strided addressing. 

(3) Caching arrays to ensure that in any vector/vector to vector operations (x( i )=y( i )*  z(i)) 
only one read/store is made to memory while the other two read/stores are made to cache. 
As three read/stores can be made to cache in a single clock, while only one can be made to 
memory through the cache, this considerably improves the performance for the codes 
considered in this paper that would otherwise be severely restricted by the available 
memory bandwidth. 

(4) Replacing divides with multiplies. As divides take three times as long as multiplies it is 
always good practice to replace them with multiplies. However, an improvement in 
performance will only be obtained if the code is not otherwise limited. Thus, replacing 
divides with multiplies for the Zebra leads to no improvement in performance as the vector 
length and strided memory addressing otherwise limit the performance. 

It should also be noted that the array dimensions have been chosen to avoid memory bank 
conflicts for the STAR, which has 16-way interleaved memory. If such a conflict occurs it will 
degrade the performance of both the Zebra and MZ methods by a significant amount. 

The difference in performance for the MZ and Zebra on the FUJITSU is relatively small when 
compared to that on the STAR. This is due to the architecture of the FUJITSU, which is 
considerably different from the STAR. The FUJITSU has a significantly better short vector 
performance as noted in the previous section. It can also handle strided memory access without 
reduction in performance. Thus, the main problems encountered with the Zebra on the STAR are 
not encountered to the same extent on the FUJITSU. The FUJITSU can simultaneously perform 
two adds, and two multiplies every clock and a divide every three clocks. However, for most of the 
time it is performing between one and two floating point operations per clock due to the 
limitation of only having two load/store pipes to memory. As the FUJITSU has a relatively small 
vector register, arrays cannot be held in cache to reduce the memory bandwidth limitation, as on 
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the STAR. Finally, the FUJITSU does not suffer a degradation in performance on divides 
provided there are enough adds and multiplies in the loop to allow continuous operation of the 
add/multiply pipes, as is the case in loops 3 and 5 in the Zebra method. Thus, although the MZ is 
seen to perform well on the FUJITSU, the dramatic improvement in performance observed on 
the STAR is not obtained. 

To determine the effect the compiler may be having on the performance, estimates have been 
obtained for the theoretical peak performances of the vectorized codes based on the architectural 
features of each of the machines. All of the vectorized codes achieve a performance of within 20% 
of their theoretical peak, indicating that it is the codes in combination with the architecture of the 
machines that has been tested rather than the vectorizing capability of the two compilers. 

5. CONCLUSIONS 

A number of iterative vectorized Poisson’s solvers for use with the Navier-Stokes equations have 
been tested. Timing results have been obtained for the solution of a Poisson’s equation and, with 
the solvers embedded in a Navier-Stokes code, for the solution for natural convection in a cavity 
subjected impulsively to a horizontal temperature gradient. Results have been obtained in both 
scalar and vector forms on a STAR 91OVP, a relatively inexpensive SPARC-based vector 
architecture machine with a peak floating point speed of 132 mflops, and a FUJITSU VP2200, 
a high-end vector architecture supercomputer with a peak floating point speed of 1-25 Gflops. 

On both the machines and for both the problems, the vectorized modified Zebra method 
described in this paper is the most efficient of the algorithms considered. Its superior efficiency is 
particularly evident for the natural convection problem on the STAR, where the Jacobi-type 
methods performed badly due to their poor low wave number smoothing. The modified Zebra 
method has been specifically optimized for the STAR by maximizing the effective vector lengths 
and reducing to a minimum the amount of non-contiguous memory accessing. As a result, on the 
STAR the modified Zebra runs in vectorized form at 3.4 times the floating point speed of the 
standard Zebra and it is anticipated that a good vector performance would be obtained on any 
machine with similar characteristics. The modifications will ensure a high floating point speed on 
any vector machine; however, on a machine such as the FUJITSU, with proportionally better 
short vector and non-contiguous memory access performance, the relative improvement in 
performance of the modified method is less significant. 

The good performance of the modified Zebra code in both scalar and vector form on both the 
architectures considered is particularly important in the light of current day program develop- 
ment practice for scientific and engineering problems, whereby a code is frequently developed on 
scalar workstations and low-end vector computers and must run efficiently on scalar and low- 
and high-end vector machines. 
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